欢迎光临江南竞技官方网站!
语言选择: 中文版 ∷  英文版

纯电动三合一电驱总成NVH问题的方法

时间: 2024-03-11 16:09:00 |   作者: 江南竞技平台app

  某纯电动三合一电驱动总成在整车节气门全开(Wide Open Throttle, WOT)、脉冲序列输出(Pulse Trn Output, POT)加速和反拖滑行行驶工况时,在车外和车内近场都出现非常明显异响、啸叫等噪音,主要发生频率范围大概在20~5 000 Hz,非常容易被人耳朵识别。控制啸叫NVH问题的途径如图1所示,其中控制啸叫的两个主要途径是控制激励源和传播路径,本文主要是经过控制激励源来优化NVH问题达到目的。

  对下线车进行主观评价:组织相关专家对66#车进行主观评价,主观感受车辆存在很明显的变速箱啸叫;车辆在一级齿轮主阶次、二级齿轮主阶次和一#2级反拖主阶次都出现啸叫较严重NVH问题,不可接受。

  减速器NVH问题产生的因素很多,NVH—噪音、振动、模态分析[1-2],识别减速器NVH噪音问题的影响因素进行分解,如图3所示。

  减速器NVH问题主要体现为齿轮啸叫问题,通过对激励、路径和响应进行故障问题分析,本文主要从激励源齿轮副啮合噪声特性研究分析[3],产生齿轮啮合的啸叫可能因子分解,如图4所示。

  综上,电驱动减速器NVH问题主体问题有:1)齿轮宏观参数指标优化重新设计;2)齿轮微观修形的优化重新设计。

  通过优化齿轮宏观参数,在保证满足齿轮强度下,通过减小齿轮模数、增加齿数、提高齿顶高系数和增大螺旋角方向,提高端面和轴向重合度,实现减小传递误差。众所周知,齿轮啮合重合度越大,单个齿所受的载荷越小,传动越平稳,传递误差越小,所以通过增加端面重合度、轴向重合度和总重合度来减小传递误差,这是减速器解决NVH噪音问题优化齿轮宏观参数的最大的目的,如表1所示。

  目前纯电动汽车扭矩需求慢慢的变大,同时扭矩使用较宽,又因制造和安装误差、轴系的弯曲扭转变形、齿轮的受载弹性变形、热变形、轴承游隙等复杂因素的影响,导致减速器齿轮的齿形偏离理论轮廓,导致非常严重的载荷集中现象,从而加剧NVH啸叫噪音。另一方面,纯电动车速也慢慢变得高,齿轮传递的功率相应增大,因此,运转中会增加热变形,使得齿轮副的啮合偏离理论轮廓,从而增加传递误差。这时,需要对齿轮进行微观修形,补偿实际啮合与理论啮合之间的偏离,能有效优化减速器的啸叫噪音NVH问题。齿轮修形可分为修缘、鼓形、端面修形和角度修形。受载齿轮在单对齿啮合时,轮齿会因弹性变形而产生基节误差。另外,齿轮还存在制造上的基节误差,啮入啮出存在冲击,极度影响齿轮传动平稳性,为了消除这种啮入啮出冲击干涉,考虑磨齿工艺性和加工成本,常用对齿顶进行修缘。由于齿轮运转系统的变形和其制造、安装上的误差,齿轮啮合时载荷沿齿面接触线的分布是不均匀的。如果齿轮轴不平行或其他原因造成轴两边的弯曲变形不等时,则会发生齿端局部接触现象,出现载荷集中的现象。为避免上述两个现象,减轻啮合冲击,进行齿向端面修形。经修鼓形量的齿轮啮合接触会先发生在靠近齿宽中间部分,然后再过渡到全齿宽上,有利于齿面上的载荷分布均布,并能提高齿轮的疲劳寿命,降低NVH噪音问题。在产品研究开发初期,考虑NVH开发[4-5],首先用Masta软件建模,把齿轮、轴、差速器壳体进行有限元画网格处理,其次把电驱动单元(Electric Drive Unit, EDU)三合一总成壳体进行有限元处理,把壳体有限元整体导入Masta模型中,再按照客户或成熟产品常用载荷谱进行微观修形优化设计仿线所示,对齿顶进行修缘,同时,在齿形、齿向方向上分别进行鼓形量(Ca, Cβ)及齿形、向角度误差(fHα, fHβ)进行修形,以达到传递误差TE降低。TE目标值一级齿轮副<0.25,二级齿轮副<0.5,齿轮接触斑点中心应位于齿高H*40%和齿宽B*40%形成的矩形区域内为设计目标。

  观修形优化前后微观参数对比,T1和T2是优化前,T3是优化后结果,如表2所示。

  微观修形优化前后TE数值对比,T1和T2是优化前、T3是优化后,一、二级齿轮副TE值优化前后对比,如图6和图7所示。

  以整车啸叫NVH问题作为减速器的故障表现形式,通过对故障车NVH测试以及阶次分析,识别出主要噪声阶次。通过以上齿数、模数、齿顶高系数、齿宽等宏观参数优化,特别进行细高齿优化设计,其目的都是提高齿轮的重合度,同时通过Masta软件建模仿真修形,对齿顶修缘、齿形、齿向角度修形及鼓形量等微观参数优化设计,实现减小传递误差、增大重合度,经过以上优化验证很好地改善齿轮啮合区域,减小传递误差,此方案对于解决纯电动高速电驱EDU总成NVH问题效果较佳,最终得到客户的认可,实现量产,也为纯电动汽车高速EDU减速器NVH性能工程化优化提供一种思路。

  (无充电IC和升压IC)移动电源方案:专利电路,低价格,高性能,多重保护。

  本帖最后由 570 于 2013-9-18 14:34 编辑 最近遇到不少朋友问及移动电源

  本帖最后由 yidu01 于 2013-10-21 11:01 编辑 最近遇到不少朋友问及移动电源

  也有同步整流的,成本跟致尚微系列基本持平或者高于致尚微5毛到1块5左右。但是性能及稳定性均不如致尚微的系列产品

  牙刷方案开发,性能强大稳定,成本低!及其他消费类电子方案开发技术支持`

  牙刷方案开发,性能强大稳定,成本低!芯片可按照每个客户需求功能来写入 相比市场上驱动和马达分开的方案更有优势,外围更精简,板子做出来比较美观。`

  方案指的是移动电源方案中将充电管理、同步升压和电量显示三者集成在一起的电源管理方案。ZS6300、ZS6366

  方案哪种最稳定 /

  i.MXRTxxx里FLEXSPI_MCR0寄存器保留位会造成IP CMD读写异常?

  浅析基于matlab Parameter Estimation Tool工具箱的电池参数

  【量子计算机重构未来 阅读体验】+量子计算机的原理究竟是什么以及有哪些应用